

EPA GROUND WATER INVESTIGATION

San Mateo Creek Basin Uranium Legacy Site

December 15, 2016
Presentation to Laguna Pueblo

PROJECT OBJECTIVE

Characterize ground water quality and impact by legacy uranium mining and milling activities

WHERE IS THE GROUND WATER?

• Alluvial Ground Water

- Shallow ground water
- At depths reaching about 120 feet below ground surface
- In sediments at base of drainage channels (arroyos, creeks)

Bedrock Ground Water

- Deeper ground water
- Hundreds of feet below ground surface
- In rock formations

CONCEPTUAL SITE GROUND WATER MODEL

Generalized Cross Section Through San Mateo Creek Basin

CONCEPTUAL SITE GROUND WATER MODEL

EXPOSED BEDROCK FORMATIONS

San Mateo Creek Basin

View Looking West from Hwy 605

View of Mt. Taylor Looking East from Hwy 605

HOW DID WET MINE OPERATIONS AFFECT GROUND WATER?

- Dewatered underground workings
- Discharged billions of gallons of mine water to creeks and arroyos
- Water infiltrated into ground
- Increased amount of ground water in alluvial sediments and bedrock
- Changed quality of ground water

Draft – For Discussion Purposes Only Not to Scale

父 Section 24 **Section 35** Mine Mine Section 30 X Cliffside Mine Section 33 Mine Mine **Rio Algom** Johnny M Mine Mt Taylor Mine **公 San Mateo** 父 Mine SAND CURVE **ROUNDY RANCH** Draft - For Discussion Purposes Only

MINE WATER DISCHARGE

Artificially
Created
Surface Flows
in Creeks
and Arroyos

EPA CONDUCTS MULTI-PHASED INVESTIGATION

Phase 1

Shallow Alluvial Aquifer 2012 – 2016 (Completed)

Phase 2

Bedrock & Alluvial Aquifers 2015 – 2017

Phase 3

Develop Conceptual Site Ground Water Model 2017 - 2018

Wet Alluvial Sediments

Bedrock Sandstone

Drill Bit and Piping

PHASE 1 ACTIVITIES COMPLETED

30 Boreholes Drilled

- 6 monitoring wells installed where water encountered
- 24 boreholes dry

15 Existing Wells Sampled

- 10 private wells
- 5 industry monitoring wells
- Includes both alluvial and bedrock wells

Core Sample

PHASE 1 RESULTS SUMMARY

- Attempt to Characterize Alluvial Water Quality had Mixed Results
 - Lack of Natural Saturation in Many Areas Investigated
- Alluvial Water Quality Varies Across Basin
 - Good quality upgradient of mines and mills
 - Poor quality downgradient of mines and mills
- Mine Discharge Water Increased Saturation in Alluvium
- Mine Discharge Water **Draining Out** of Alluvium Today

UPGRADIENT VS DOWNGRADIENT

EVIDENCE OF INCREASING AND DECREASING SATURATION

Alluvium

SMC Alluvial Ground Water

Rio San Jose Alluvial Ground Water

Monitoring
Well - 2014

1960 or Older Well

Dry BoreholeDrilled in2014/2015

PLANNED ACTIVITIES FOR GROUND WATER INVESTIGATION

